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Large amplitude free flexural vibrations of slender beams have been investigated by several
researchers [1–4]. The effect of axial displacement is considered by Raju et al. [1], in which
the strain energy U and the kinetic energy T of the unloaded beam are given by
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where u is the axial displacement due to a tensile force. Raju et al. [1] concluded that the
effect of the longitudinal deformation and inertia is to reduce the non-linearity, and the
longitudinal inertia is negligible for slender beams. In reference [3], a perturbation method
is used to analyze the non-linear vibrations of a beam–mass system under different
boundary conditions. Its final model ignores the axial displacement, but includes the
viscous damping and the external excitation [3].

In a recent note [5], different assumed shape functions are used, one at a time, to obtain
the kinetic and potential energies of the three classical beams carrying a concentrated mass
at various positions. A closed-form expression for the fundamental frequency of each case
is then written in terms of mass ratio and position parameter [5] as,

v2 = [EI/(Ml3)] [K(Aa +A)/(Ba +B)]. (1)

In reference [3], the transcendental frequency equations are given for different end
conditions. The effects of the position and magnitude of the mass on the first five
frequencies are investigated [3].

For comparison of these models, those equations for the simply-supported beam
carrying concentrated mass are given as follows [3, 5]:

yW =
Wbx
6lEI

(l2 − x2 − b2), for 0E xE a; (2a)

yW =
Wa(l− x)
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(2lx− x2 − a2), for aE xE l; (2b)
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wx
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yc = ym + yW , for 0E xE l; (4)

yt =C sin
px
l

, for 0E xE l; (5)

2 tanh b tan b+ ab{tanh b sin bh(sin bh−tan b cos bh)

+ tan b sinh bh(tanh b cosh bh−sinh bh)}=0. (6)

Note that equations (2–5) are the respective shape functions that will each be used in
Rayleigh’s quotient for the frequency analysis [5], while equation (6) is given in reference
[3] for multi-mode frequencies associated with different mass ratios (a=M/(rAl)) and
locations (h= x/l).

Rewrite equation (1) as v2 = v̄2EI/(ml3), where v̄ = b2. Table 1 compares the
fundamental frequencies obtained via equations (2–6). Several points are worth noting
from Table 1.

1. The frequencies obtained from the shape function yc (equation (4)), which involves
both the distributed beam mass m (=wl/g) and the weight’s mass M (=W/g), are closer
to those evaluated by the transcendental equation (6).

2. As expected, the frequencies are unchanged with respect to different weights at the
ends (h=0 and 1) due to the zero displacement.

3. All models give similar results for cases with the weight placed near the beam’s centre.
The same finding is concluded in reference [6].

4. In general, the frequencies obtained by using ym and yt are higher than others.
5. As stated in reference [7], the model generated by using yW (weight only) must not

be used if the weight is placed near the beam’s ends as the frequencies obtained are quite
high and inaccurate.

It is concluded that the model using yc can be used to quickly obtain the fundamental
frequency of loaded beams, owing to its simple algebraic expression (see reference [5] for
the full expression). Nevertheless, the transcendental expression (6) is useful for cases of
higher-mode frequencies.

In references [2] and [4], both experimental and theoretical results were presented for
beams carrying a concentrated mass at mid-span. By virtue of the Rayleigh–Ritz procedure
and by adding a tensile force, a multi-term series with sine function was used for deflection

T 1

Fundamental frequency of loaded beams for different mass ratios and locations

a h v̄ (eq. (6)) v̄ (eq. (2)) v̄ (eq. (3)) v̄ (eq. (4)) v̄ (eq. (5))

1 0·0 9·8695 12·5499 9·8767 9·8767 9·8696
0·1 8·9962 9·86805 9·0328 9·0432 9·0437
0·2 7·4541 7·63423 7·5749 7·4575 7·5898
0·3 6·3946 6·43678 6·4953 6·3958 6·4951
0·4 5·8468 5·85753 5·9026 5·8482 5·8887
0·5 5·6795 5·68399 5·7170 5·6809 5·6982

10 0·0 9·8695 12·5499 9·8767 9·8767 9·8696
0·1 5·3322 5·37843 5·7448 5·3409 5·7858
0·2 3·2598 3·26237 3·4918 3·2599 3·5093
0·3 2·5279 2·52832 2·6283 2·5279 2·6293
0·4 2·2252 2·22527 2·2659 2·2252 2·2589
0·5 2·1395 2·13955 2·1632 2·1395 2·1537
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curves for modes higher than the first [2]. A further study by Low et al. [4] suggests a better
model for the frequency of non-linear beams carrying a concentrated mass at x= a:

v2 =$g EI0d2y
dx21
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dx%>$g rAy2 dx+My2=x= a%, (7)

in which the term of bending slope (dy/dx) is also considered in reference [3]. Its axial effect
will act to increase the frequency.
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We would like to thank Prof. K. H. Low [1] for his comments on our paper [2] and detailed
comparisons between our paper and some of the relevant work. While we agree with his
comments and conclusions, to clarify the issue, two minor comments are listed below:

1) For the model presented in our paper [2] the comment that ‘‘Its final model ignores
the axial displacement’’ is not precise. A more detailed derivation of our model may be
found in [3]. In that paper the axial displacement is taken into account and then eliminated
between the coupled equations by using integration.

2) It is worth noting that our transcendental equation as well as the mode shapes were
derived based on exact methods. It might be expected that the solutions based on
approximate methods would converge to those of ours when better mode shapes are
chosen.
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